Noyce Track 4
Lessons Learned Panel

Moderator: Jack Butler, National Science Foundation

Panelists:
• Douglas Larkin, Montclair State University
• Gregory Rushton, Middle Tennessee State University
Studying the Retention of Novice Science Teachers by Learning from School District Induction and Mentoring Programs (IMPREST)

NSF #1758282

Dr. Sandra Adams
Department of Biology
Montclair State University

Dr. Doug Larkin
Dept. of Teaching & Learning
Montclair State University

Liz Carletta, Montclair State University;
Suzanne Poole Patzelt, Montclair State University;
Khadija Ahmed, Center for Research & Evaluation on Education & Human Services
IMPREST: Induction and Mentoring Programs for the Retention of Science Teachers

Goal: To identify school districts where science teachers are successfully being retained, and then go there and investigate why (5-6 per state). We focus on:

- Teachers in high-need schools
- Teachers of color
- Recipients of Noyce scholarships
Lessons Learned

- Startup took much longer than anticipated, mostly because I was asking new questions my university hadn’t yet dealt with. (Aug→ Jan, Doc student tuition)
- Weekly Research Team meetings
- Advisory board meeting was very helpful
- Our project includes site visits, making contact and getting approved took much longer than anticipated
- Good to have parts of the project that operate independently (Instruments/IRB, data analysis, policy case studies, website: https://www.montclair.edu/imprest/)
- It’s possible to stick to the logic model even if the plan changes (COVID-19)
- Our post-award facilitator is really helpful, particularly in moving funds around to deal with changes.
<table>
<thead>
<tr>
<th>Inputs</th>
<th>Activities</th>
<th>Outputs</th>
<th>Short-Term Outcomes</th>
<th>Mid-Term Outcomes</th>
<th>Long-Term Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>What resources will be used to support the project?</td>
<td>What are the main things the project will do/provide?</td>
<td>How many and what sort of observable/tangible results will be achieved?</td>
<td>What will occur as a direct result of the activities & outputs? (typically, changes in knowledge, skills, attitudes)</td>
<td>What results should follow from the initial outcomes? (typically changes in behavior, policies, practice)</td>
<td>What results should follow from the initial outcomes? (typically changes in broader conditions)</td>
</tr>
<tr>
<td>Montclair State University faculty</td>
<td>Perform a secondary data analysis of teacher retention data from four US States (NJ, NC, PA, WI) using a minimum 10 years of state staffing data.</td>
<td>Research describing a deeper and more nuanced description of science teacher retention and turnover in targeted states and case studies in mentoring, induction and retention to be disseminated as conference papers (AERA, AAAS, NARST, NSTA), peer-reviewed journal articles, and a book.</td>
<td>Stakeholders will have a researched-based set of best-practices to guide mentoring and retention efforts</td>
<td>Higher quality mentoring and induction activity</td>
<td>• More favorable student outcomes for science learning from better mentored and more experienced teachers.</td>
</tr>
<tr>
<td>NSF funding</td>
<td>Identify top 5% (approx 15-20) districts per state that are successful in retaining science teachers (general population, high need schools, and teachers of color)</td>
<td>Policy briefs for state and district policymakers concerning best practices in teacher mentoring and induction</td>
<td>Cases of effective types of induction and mentoring necessary to retain science teachers of color, and science teachers in high need districts will be available as guides for best practice nationally.</td>
<td>Increased retention rates for science teachers generally, science teachers in high need schools, and science teachers of color.</td>
<td>• View of teacher education as initial preparation plus induction.</td>
</tr>
<tr>
<td>Doctoral students in the MSU Teacher Education and Teacher Development (TETD) Ph.D. program</td>
<td>Conduct 5-6 case studies per state of successful induction mentoring programs</td>
<td>Development and dissemination of a tool for any state to use to calculate actual retention rates from existing and future five-year staffing data sets.</td>
<td>Doctoral students in the TETD Ph.D. program at MSU will be prepared to continue conducting research on teacher retention and induction program quality.</td>
<td>Policy attention to 5-year retention rate (away from 1-year rate), and shifted view away from viewing induction support as solely one-to-one mentoring towards broader systems of support for new teachers</td>
<td>• Adequate resources allocated to mentoring and induction by policymakers and stakeholders.</td>
</tr>
<tr>
<td>Database / visual basic consulting from the MSU computer science department</td>
<td>Track retention of Noyce scholars in targeted states, and compare with peer group.</td>
<td>A comparison of the retention rates of Noyce-funded scholars in targeted states as compared to their non-Noyce counterparts.</td>
<td>State departments of education will be able to use the IMPREST retention tools to calculate actual retention rates.</td>
<td>State policy impacts driven by actual five-year retention data across multiple US states.</td>
<td>• State policy impacts driven by actual five-year retention data across multiple US states.</td>
</tr>
<tr>
<td>Data resources from the State of New Jersey, the State of Pennsylvania, and the State of Wisconsin</td>
<td></td>
<td></td>
<td>Project team members will be better prepared to guide the design/implementation of induction programs through this research</td>
<td></td>
<td>• Adequate resources allocated to mentoring and induction by policymakers and stakeholders.</td>
</tr>
<tr>
<td>Data resources from the North Carolina Education Research Data Center</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Gregory Rushton
Director, Tennessee STEM Education Center
Professor of Chemistry
Middle Tennessee State University
Q & A
Noyce Track 4
Lessons Learned Panel
Moderator: Jack Butler, National Science Foundation
Panelists:
- Douglas Larkin, Montclair State University
- Gregory Rushton, Middle Tennessee State University